Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Commun Chem ; 6(1): 257, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985888

RESUMO

ß-Amino acid-containing macrolactams represent a structurally diverse group of bioactive natural products derived from polyketides; however we are currently lacking a comprehensive overview about their abundance across bacterial families and the underlying biosynthetic diversity. In this study, we employed a targeted ß-amino acid-specific homology-based multi-query search to identify potential bacterial macrolactam producers. Here we demonstrate that approximately 10% of each of the identified actinobacterial genera harbor a biosynthetic gene cluster (BGC) encoding macrolactam production. Based on our comparative study, we propose that mutations occurring in specific regions of polyketide synthases (PKS) are the primary drivers behind the variation in macrolactam ring sizes. We successfully validated two producers of ciromicin A from the genus Amycolatopsis, revised the composition of the biosynthetic gene cluster region mte of macrotermycins, and confirmed the ciromicin biosynthetic pathway through heterologous expression. Additionally, network-based metabolomic analysis uncovered three previously unreported macrotermycin congeners from Amycolatopsis sp. M39. The combination of targeted mining and network-based analysis serves as a powerful tool for identifying macrolactam producers and our studies will catalyze the future discovery of yet unreported macrolactams.

2.
Proc Biol Sci ; 290(2009): 20231559, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37848067

RESUMO

Mutualistic coevolution can be mediated by vertical transmission of symbionts between host generations. Termites host complex gut bacterial communities with evolutionary histories indicative of mixed-mode transmission. Here, we document that vertical transmission of gut bacterial strains is congruent across parent to offspring colonies in four pedigrees of the fungus-farming termite Macrotermes natalensis. We show that 44% of the offspring colony microbiome, including more than 80 bacterial genera and pedigree-specific strains, are consistently inherited. We go on to demonstrate that this is achieved because colony-founding reproductives are selectively enriched with a set of non-random, environmentally sensitive and termite-specific gut microbes from their colonies of origin. These symbionts transfer to offspring colony workers with high fidelity, after which priority effects appear to influence the composition of the establishing microbiome. Termite reproductives thus secure transmission of complex communities of specific, co-evolved microbes that are critical to their offspring colonies. Extensive yet imperfect inheritance implies that the maturing colony benefits from acquiring environmental microbes to complement combinations of termite, fungus and vertically transmitted microbes; a mode of transmission that is emerging as a prevailing strategy for hosts to assemble complex adaptive microbiomes.


Assuntos
Isópteros , Microbiota , Animais , Evolução Biológica , Fungos , Agricultura , Simbiose , Filogenia
3.
Commun Chem ; 6(1): 79, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095327

RESUMO

Macrotermitinae termites have farmed fungi in the genus Termitomyces as a food source for millions of years. However, the biochemical mechanisms orchestrating this mutualistic relationship are largely unknown. To deduce fungal signals and ecological patterns that relate to the stability of this symbiosis, we explored the volatile organic compound (VOC) repertoire of Termitomyces from Macrotermes natalensis colonies. Results show that mushrooms emit a VOC pattern that differs from mycelium grown in fungal gardens and laboratory cultures. The abundance of sesquiterpenoids from mushrooms allowed targeted isolation of five drimane sesquiterpenes from plate cultivations. The total synthesis of one of these, drimenol, and related drimanes assisted in structural and comparative analysis of volatile organic compounds (VOCs) and antimicrobial activity testing. Enzyme candidates putatively involved in terpene biosynthesis were heterologously expressed and while these were not involved in the biosynthesis of the complete drimane skeleton, they catalyzed the formation of two structurally related monocyclic sesquiterpenes named nectrianolins.

4.
Mol Ecol ; 32(13): 3657-3671, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37096441

RESUMO

Gut microbial communities are complex and heterogeneous and play critical roles for animal hosts. Early-life disruptions to microbiome establishment can negatively impact host fitness and development. However, the consequences of such early-life disruptions remain unknown in wild birds. To help fill this gap, we investigated the effect of continuous early-life gut microbiome disruptions on the establishment and development of gut communities in wild Great tit (Parus major) and Blue tit (Cyanistes caeruleus) nestlings by applying antibiotics and probiotics. Treatment neither affected nestling growth nor their gut microbiome composition. Independent of treatment, nestling gut microbiomes of both species grouped by brood, which shared the highest numbers of bacterial taxa with both nest environment and their mother. Although fathers showed different gut communities than their nestlings and nests, they still contributed to structuring chick microbiomes. Lastly, we observed that the distance between nests increased inter-brood microbiome dissimilarity, but only in Great tits, indicating that species-specific foraging behaviour and/or microhabitat influence gut microbiomes. Overall, the strong maternal effect, driven by continuous recolonization from the nest environment and vertical transfer of microbes during feeding, appears to provide resilience towards early-life disruptions in nestling gut microbiomes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Passeriformes , Aves Canoras , Animais , Herança Materna , Passeriformes/microbiologia , Galinhas
5.
Ugeskr Laeger ; 185(13)2023 Mar 27.
Artigo em Dinamarquês | MEDLINE | ID: mdl-36999292

RESUMO

Hereditary haemorrhagic telangiectasia is a genetic disease, causing abnormal formations of blood vessels in skin, mucus membranes, lungs, liver, and brain. In the liver, the disease results in shunting of blood, bypassing the capillary bed. Recent studies have shown that the prevalence of liver shunts are more frequent than previously suggested. The patients present with symptoms related to high-output cardiac failure causing dyspnoea and oedema. Liver shunts can be shown using CT-scans and ultrasonography. The only curable treatment is a liver transplant; however, it is the last treatment option, as argued in this review.


Assuntos
Transplante de Fígado , Telangiectasia Hemorrágica Hereditária , Humanos , Telangiectasia Hemorrágica Hereditária/diagnóstico , Telangiectasia Hemorrágica Hereditária/diagnóstico por imagem , Fígado , Tomografia Computadorizada por Raios X , Pele
6.
Mol Ecol ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779590

RESUMO

Toxicity has evolved multiple times across the tree of life and serves important functions related to hunting, defence and parasite deterrence. Toxins are produced either in situ by the toxic organism itself or associated symbionts, or acquired through diet. The ability to exploit toxins from external sources requires adaptations that prevent toxic effects on the consumer (autoresistance). Here, we examine genomic adaptations that could facilitate autoresistance to the diet-acquired potent neurotoxic alkaloid batrachotoxin (BTX) in New Guinean toxic birds. Our work documents two new toxic bird species and shows that toxic birds carry multiple mutations in the SCN4A gene that are under positive selection. This gene encodes the most common vertebrate muscle Nav channel (Nav1.4). Molecular docking results indicate that some of the mutations that are present in the pore-forming segment of the Nav channel, where BTX binds, could reduce its binding affinity. These mutations should therefore prevent the continuous opening of the sodium channels that BTX binding elicits, thereby preventing muscle paralysis and ultimately death. Although these mutations are different from those present in Neotropical Phyllobates poison dart frogs, they occur in the same segments of the Nav1.4 channel. Consequently, in addition to uncovering a greater diversity of toxic bird species than previously known, our work provides an intriguing example of molecular-level convergent adaptations allowing frogs and birds to ingest and use the same neurotoxin. This suggests that genetically modified Nav1.4 channels represent a key adaptation to BTX tolerance and exploitation across vertebrates.

7.
ISME J ; 17(5): 733-747, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36841903

RESUMO

Characterizing ancient clades of fungal symbionts is necessary for understanding the evolutionary process underlying symbiosis development. In this study, we investigated a distinct subgeneric taxon of Xylaria (Xylariaceae), named Pseudoxylaria, whose members have solely been isolated from the fungus garden of farming termites. Pseudoxylaria are inconspicuously present in active fungus gardens of termite colonies and only emerge in the form of vegetative stromata, when the fungus comb is no longer attended ("sit and wait" strategy). Insights into the genomic and metabolic consequences of their association, however, have remained sparse. Capitalizing on viable Pseudoxylaria cultures from different termite colonies, we obtained genomes of seven and transcriptomes of two Pseudoxylaria isolates. Using a whole-genome-based comparison with free-living members of the genus Xylaria, we document that the association has been accompanied by significant reductions in genome size, protein-coding gene content, and reduced functional capacities related to oxidative lignin degradation, oxidative stress responses and secondary metabolite production. Functional studies based on growth assays and fungus-fungus co-cultivations, coupled with isotope fractionation analysis, showed that Pseudoxylaria only moderately antagonizes growth of the termite food fungus Termitomyces, and instead extracts nutrients from the food fungus biomass for its own growth. We also uncovered that Pseudoxylaria is still capable of producing structurally unique metabolites, which was exemplified by the isolation of two novel metabolites, and that the natural product repertoire correlated with antimicrobial and insect antifeedant activity.


Assuntos
Isópteros , Animais , Isópteros/microbiologia , Evolução Biológica , Aclimatação , Simbiose/genética , Fungos/genética , Agricultura
9.
Microbiol Spectr ; 10(6): e0123422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36250871

RESUMO

Fungus-growing termites are efficient in degrading and digesting plant substrates, achieved through the engagement of symbiotic gut microbiota and lignocellulolytic Termitomyces fungi cultivated for protein-rich food. Insights into where specific plant biomass components are targeted during the decomposition process are sparse. In this study, we performed several analytical approaches on the fate of plant biomass components and did amplicon sequencing of the 16S rRNA gene to investigate the lignocellulose digestion in the symbiotic system of the fungus-growing termite Odontotermes formosanus (Shiraki) and to compare bacterial communities across the different stages in the degradation process. We observed a gradual reduction of lignocellulose components throughout the process. Our findings support that the digestive tract of young workers initiates the degradation of lignocellulose but leaves most of the lignin, hemicellulose, and cellulose, which enters the fresh fungus comb, where decomposition primarily occurs. We found a high diversity and quantity of monomeric sugars in older parts of the fungus comb, indicating that the decomposition of lignocellulose enriches the old comb with sugars that can be utilized by Termitomyces and termite workers. Amplicon sequencing of the 16S rRNA gene showed clear differences in community composition associated with the different stages of plant biomass decomposition which could work synergistically with Termitomyces to shape the digestion process. IMPORTANCE Fungus-farming termites have a mutualist association with fungi of the genus Termitomyces and gut microbiota to support the nearly complete decomposition of lignocellulose to gain access to nutrients. This elaborate strategy of plant biomass digestion makes them ecologically successful dominant decomposers in (sub)tropical Old World ecosystems. We employed acid detergent fiber analysis, high-performance anion-exchange chromatography (HPAEC), high-performance liquid chromatography (HPLC), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), and amplicon sequencing of the 16S rRNA gene to examine which lignocellulose components were digested and which bacteria were abundant throughout the decomposition process. Our findings suggest that although the first gut passage initiates lignocellulose digestion, the most prominent decomposition occurs within the fungus comb. Moreover, distinct bacterial communities were associated with different stages of decomposition, potentially contributing to the breakdown of particular plant components.


Assuntos
Isópteros , Lignina , Animais , Lignina/metabolismo , Isópteros/genética , Isópteros/metabolismo , Isópteros/microbiologia , Ecossistema , RNA Ribossômico 16S/genética , Bactérias/genética , Fungos/genética , Simbiose , Sistema Digestório/microbiologia , Açúcares/metabolismo , Digestão
10.
Environ Microbiome ; 17(1): 41, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941623

RESUMO

BACKGROUND: Subarctic regions are particularly vulnerable to climate change, yet little is known about nutrient availability and biodiversity of their cave ecosystems. Such knowledge is crucial for predicting the vulnerability of these ecosystems to consequences of climate change. Thus, to improve our understanding of life in these habitats, we characterized environmental variables, as well as bacterial and invertebrate communities of six subarctic caves in Northern Norway. RESULTS: Only a minuscule diversity of surface-adapted invertebrates were found in these caves. However, the bacterial communities in caves were compositionally different, more diverse and more complex than the nutrient-richer surface soil. Cave soil microbiomes were less variable between caves than between surface communities in the same area, suggesting that the stable cave environments with tougher conditions drive the uniform microbial communities. We also observed only a small proportion of cave bacterial genera originating from the surface, indicating unique cave-adapted microbial communities. Increased diversity within caves may stem from higher niche specialization and levels of interdependencies for nutrient cycling among bacterial taxa in these oligotrophic environments. CONCLUSIONS: Taken together this suggest that environmental changes, e.g., faster melting of snow as a result of global warming that could alter nutrient influx, can have a detrimental impact on interactions and dependencies of these complex communities. This comparative exploration of cave and surface microbiomes also lays the foundation to further investigate the long-term environmental variables that shape the biodiversity of these vulnerable ecosystems.

11.
J Nat Prod ; 85(9): 2159-2167, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36040034

RESUMO

Cultures of a termite-associated and a free-living member of the fungal genus Podaxis, revived from spores maintained in century-old herbarium collections, were analyzed for their insecticidal and antimicrobial effects. Their secondary metabolomes were explored to uncover possible adaptive mechanisms of termite association, and dereplication of LC-HRMS/MS data sets led to the isolation of podaxisterols A-D (1-4), modified ergosterol derivatives that result from a Diels-Alder reaction with endogenous nitrosyl cyanide. Chemical structures were determined based on HRMS/MS and NMR analyses as well as X-ray crystallography. The putative origin of the endogenous fungal nitrosyl cyanide and ergosterol derivatives is discussed based on results obtained from stable isotope experiments and in silico analysis. Our "omics"-driven analysis of this underexplored yet worldwide distributed fungal genus builds a foundation for studies on a potential metabolic adaptations to diverse lifestyles.


Assuntos
Agaricales , Anti-Infecciosos , Ergosterol , Inseticidas , Isópteros , Agaricales/química , Agaricales/metabolismo , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Ergosterol/análogos & derivados , Ergosterol/isolamento & purificação , Ergosterol/farmacologia , Inseticidas/química , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Isópteros/microbiologia , Metabolômica , Óxidos de Nitrogênio/química
12.
Ecol Evol ; 12(2): e8497, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222943

RESUMO

Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian-haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host-parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host-parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian-haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three-dimensional spatial analyses of avian-haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community-level infections are primarily driven by host community composition.

13.
STAR Protoc ; 3(1): 101126, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35112085

RESUMO

There are few protocols available for DNA extraction from fungi. Here we present four complementary protocols for extraction of genomic DNA from fungi. We quantify the efficacy of extractions and compare eight species from five filamentous fungal genera, including both basidiomycetes and ascomycetes. These protocols should be useful for extraction of DNA from a variety of filamentous fungi. For complete details on the use and execution of this protocol, please refer to Conlon et al. (2021).


Assuntos
Ascomicetos , Basidiomycota , Ascomicetos/genética
14.
mSystems ; 7(1): e0121421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35014870

RESUMO

Macrotermitinae termites have domesticated fungi of the genus Termitomyces as food for their colony, analogously to human farmers growing crops. Termites propagate the fungus by continuously blending foraged and predigested plant material with fungal mycelium and spores (fungus comb) within designated subterranean chambers. To test the hypothesis that the obligate fungal symbiont emits specific volatiles (odor) to orchestrate its life cycle and symbiotic relations, we determined the typical volatile emission of fungus comb biomass and Termitomyces nodules, revealing α-pinene, camphene, and d-limonene as the most abundant terpenes. Genome mining of Termitomyces followed by gene expression studies and phylogenetic analysis of putative enzymes related to secondary metabolite production encoded by the genomes uncovered a conserved and specific biosynthetic repertoire across strains. Finally, we proved by heterologous expression and in vitro enzymatic assays that a highly expressed gene sequence encodes a rare bifunctional mono-/sesquiterpene cyclase able to produce the abundant comb volatiles camphene and d-limonene. IMPORTANCE The symbiosis between macrotermitinae termites and Termitomyces is obligate for both partners and is one of the most important contributors to biomass conversion in the Old World tropic's ecosystems. To date, research efforts have dominantly focused on acquiring a better understanding of the degradative capabilities of Termitomyces to sustain the obligate nutritional symbiosis, but our knowledge of the small-molecule repertoire of the fungal cultivar mediating interspecies and interkingdom interactions has remained fragmented. Our omics-driven chemical, genomic, and phylogenetic study provides new insights into the volatilome and biosynthetic capabilities of the evolutionarily conserved fungal genus Termitomyces, which allows matching metabolites to genes and enzymes and, thus, opens a new source of unique and rare enzymatic transformations.


Assuntos
Isópteros , Termitomyces , Animais , Humanos , Termitomyces/genética , Filogenia , Ecossistema , Limoneno/metabolismo , Odorantes , Genômica
15.
Sci Rep ; 12(1): 713, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027664

RESUMO

The composition of gut bacterial communities is strongly influenced by the host diet in many animal taxa. For birds, the effect of diet on the microbiomes has been documented through diet manipulation studies. However, for wild birds, most studies have drawn on literature-based information to decipher the dietary effects, thereby, overlooking individual variation in dietary intake. Here we examine how naturally consumed diets influence the composition of the crop and cloacal microbiomes of twenty-one tropical bird species, using visual and metabarcoding-based identification of consumed diets and bacterial 16S rRNA microbiome sequencing. We show that diet intakes vary markedly between individuals of the same species and that literature-based dietary guilds grossly underestimate intraspecific diet variability. Furthermore, despite an effect of literature-based dietary guild assignment of host taxa, the composition of natural diets does not align with crop and cloacal microbiome similarity. However, host-taxon specific gut bacterial lineages are positively correlated with specific diet items, indicating that certain microbes associate with different diet components in specific avian hosts. Consequently, microbiome composition is not congruent with the overall consumed diet composition of species, but specific components of a consumed diet lead to host-specific effects on gut bacterial taxa.


Assuntos
Aves/microbiologia , Aves/fisiologia , Dieta , Ingestão de Alimentos/fisiologia , Microbioma Gastrointestinal/fisiologia , Microbiota/fisiologia , Clima Tropical , Animais , Aves/classificação
16.
Nat Prod Rep ; 39(2): 231-248, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34879123

RESUMO

Covering: September 1972 to December 2020Explorations of complex symbioses have often elucidated a plethora of previously undescribed chemical compounds that may serve ecological functions in signalling, communication or defence. A case in point is the subfamily of termites that cultivate a fungus as their primary food source and maintain complex bacterial communities, from which a series of novel compound discoveries have been made. Here, we summarise the origins and types of 375 compounds that have been discovered from the symbiosis over the past four decades and discuss the potential for synergistic actions between compounds within the complex chemical mixtures in which they exist. We go on to highlight how vastly underexplored the diversity and geographic distribution of the symbiosis is, which leaves ample potential for natural product discovery of compounds of both ecological and medical importance.


Assuntos
Isópteros , Agricultura , Animais , Fungos , Isópteros/microbiologia , Filogenia , Simbiose
17.
Trends Microbiol ; 30(3): 268-280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34393028

RESUMO

Birds harbor complex gut bacterial communities that may sustain their ecologies and facilitate their biological roles, distribution, and diversity. Research on gut microbiomes in wild birds is surging and it is clear that they are diverse and important - but strongly influenced by a series of environmental factors. To continue expanding our understanding of how the internal ecosystems of birds work in their natural settings, we believe the most pressing needs involve studies on the functional and evolutionary aspects of these symbioses. Here we summarize the state of the field and provide a roadmap for future studies on aspects that are pivotal to understanding the biology of avian gut microbiomes, emphasizing prospects for integrating gut microbiome work in avian conservation and host health monitoring.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Evolução Biológica , Aves , Ecossistema
18.
Metabolites ; 11(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34940597

RESUMO

Fungus-farming termites host gut microbial communities that contribute to the pre-digestion of plant biomass for manuring the fungal mutualist, and potentially to the production of defensive compounds that suppress antagonists. Termite colonies are characterized by complex division of labor and differences in diet between termite size (minor and major) and morphological (worker and soldier) castes, and this extends to the composition of their gut microbial communities. We hypothesized that gut metabolomes should mirror these differences and tested this through untargeted LC-MS/MS analyses of three South African species of fungus-farming termites. We found distinct metabolomes between species and across castes, especially between soldiers and workers. Primary metabolites dominate the metabolomes and the high number of overlapping features with the mutualistic fungus and plant material show distinct impacts of diet and the environment. The identification of a few bioactive compounds of likely microbial origin underlines the potential for compound discovery among the many unannotated features. Our untargeted approach provides a first glimpse into the complex gut metabolomes and our dereplication suggests the presence of bioactive compounds with potential defensive roles to be targeted in future studies.

19.
Front Microbiol ; 12: 717990, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539609

RESUMO

Agricultural and apicultural practices expose honeybees to a range of pesticides that have the potential to negatively affect their physiology, neurobiology, and behavior. Accumulating evidence suggests that these effects extend to the honeybee gut microbiome, which serves important functions for honeybee health. Here we test the potential effects of the pesticides thiacloprid, acetamiprid, and oxalic acid on the gut microbiota of honeybees, first in direct in vitro inhibition assays and secondly in an in vivo caged bee experiment to test if exposure leads to gut microbiota community changes. We found that thiacloprid did not inhibit the honeybee core gut bacteria in vitro, nor did it affect overall community composition or richness in vivo. Acetamiprid did also not inhibit bacterial growth in vitro, but it did affect community structure within bees. The eight bacterial genera tested showed variable levels of susceptibility to oxalic acid in vitro. In vivo, treatment with this pesticide reduced amplicon sequence variant (ASV) richness and affected gut microbiome composition, with most marked impact on the common crop bacteria Lactobacillus kunkeei and the genus Bombella. We conducted network analyses which captured known associations between bacterial members and illustrated the sensitivity of the microbiome to environmental stressors. Our findings point to risks of honeybee exposure to oxalic acid, which has been deemed safe for use in treatment against Varroa mites in honeybee colonies, and we advocate for more extensive assessment of the long-term effects that it may have on honeybee health.

20.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34586397

RESUMO

Bioconversion of hemicelluloses into simpler sugars leads to the production of a significant amount of pentose sugars, such as d-xylose. However, efficient utilization of pentoses by conventional yeast production strains remains challenging. Wild yeast strains can provide new industrially relevant characteristics and efficiently utilize pentose sugars. To explore this strategy, we isolated gut-residing yeasts from the termite Macrotermes bellicosus collected in Comoé National Park, Côte d'Ivoire. The yeasts were classified through their Internal Transcribed Spacer/Large Subunit sequence, and their genomes were sequenced and annotated. We identified a novel yeast species, which we name Barnettozyma botsteinii sp. nov. 1118T (MycoBank: 833563, CBS 16679T and IBT 710) and two new strains of Kurtzmaniella quercitrusa: var. comoensis (CBS 16678, IBT 709) and var. filamentosus (CBS 16680, IBT 711). The two K. quercitrusa strains grow 15% faster on synthetic glucose medium than Saccharomyces cerevisiae CEN.PKT in acidic conditions (pH = 3.2) and both strains grow on d-xylose as the sole carbon source at a rate of 0.35 h-1. At neutral pH, the yeast form of K. quercitrusa var. filamentosus, but not var. comoensis, switched to filamentous growth in a carbon source-dependent manner. Their genomes are 11.0-13.2 Mb in size and contain between 4888 and 5475 predicted genes. Together with closely related species, we did not find any relationship between gene content and ability to grow on xylose. Besides its metabolism, K. quercitrusa var. filamentosus has a large potential as a production organism, because of its capacity to grow at low pH and to undergo a dimorphic shift.


Assuntos
Isópteros , Animais , DNA Fúngico , Isópteros/genética , Técnicas de Tipagem Micológica , Filogenia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...